Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes

نویسندگان

  • Shali Chen
  • Prasanth Puthanveetil
  • Biao Feng
  • Scot J Matkovich
  • Gerald W Dorn II
  • Subrata Chakrabarti
چکیده

Diabetic cardiomyopathy is a cascade of complex events leading to eventual failure of the heart and cardiac fibrosis being considered as one of its major causes. miR-133a is one of the most abundantly expressed microRNAs in the heart. We investigated the role of miR-133a during severe hyperglycaemia. And, our aim was to find out what role miR-133a plays during diabetes-induced cardiac fibrosis. We saw a drastic decrease in miR-133a expression in the hearts of streptozotocin-induced diabetic animals, as measured by RT-qPCR. This decrease was accompanied by an increase in the transcriptional co-activator EP300 mRNA and major markers of fibrosis [transforming growth factor-β1, connective tissue growth factor, fibronectin (FN1) and COL4A1]; in addition, focal cardiac fibrosis assessed by Masson's trichome stain was increased. Interestingly, in diabetic mice with cardiac-specific miR-133aa overexpression, cardiac fibrosis was significantly decreased, as observed by RT-qPCR and immunoblotting of COL4A1, ELISA for FN1 and microscopic examination. Furthermore, Cardiac miR-133a overexpression prevented ERK1/2 and SMAD-2 phosphorylation. These findings show that miR-133a could be a potential therapeutic target for diabetes-induced cardiac fibrosis and related cardiac dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor diffe...

متن کامل

Exercise training attenuates diabetes-induced cardiac injury through increasing miR-133a and improving pro-apoptosis/anti-apoptosis balance in ovariectomized rats

Objective(s): The useful and effective role of exercise program to prevent cardiac tissue apoptosis and fibrosis in ovariectomized type 2 diabetic (T2DM) rats (OVR.D) is well known. The current study aimed to investigate the simultaneous effects of T2DM and swimming plan on the expression of some apoptotic, anti-apoptotic biomarkers and glycogen changes in the cardiac ...

متن کامل

Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis

Myocardial fibrosis contributes to the remodeling of heart and the loss of cardiac function leading to heart failure. SRF is a transcription factor implicated in the regulation of a large variety of genes involved in cardiac structure and function. To investigate the impact of an SRF overexpression in heart, we developed a new cardiac-specific and tamoxifen-inducible SRF overexpression mouse mo...

متن کامل

Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase

MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating β-adrenergic receptors (β-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyros...

متن کامل

MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension.

MicroRNAs play an important role in myocardial diseases. MiR-133a regulates cardiac hypertrophy, while miR-29b is involved in cardiac fibrosis. The aim of this study was to evaluate whether miR-133a and miR-29b play a role in myocardial fibrosis caused by Angiotensin II (Ang II)-dependent hypertension. Sprague-Dawley rats were treated for 4 weeks with Ang II (200  ng/kg/min) or Ang II + irbesar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2014